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ABSTRACT

Observed monthly precipitation anomalies are standardized across midlatitude land, and ergodicity is invoked
to combine the spatially distributed data into probability density functions (pdfs) of precipitation conditioned
on the strength of earlier anomalies. The conditional pdfs, though broad and overlapping, are indeed distinct at
a high (99.9%) level of confidence. This implies a nonzero degree of predictability for midlatitude precipitation,
even at 3-month leads. This behavior is reproduced by an AGCM only when land–atmosphere feedback in the
model is enabled.

1. Introduction

Higher-than-average precipitation rates over land typ-
ically lead to wetter-than-average soil wetness, which
in turn often leads to higher-than-average evaporation
rates in subsequent weeks. If this higher evaporation in
turn leads to additional rainfall, either directly through
local recycling or indirectly through a modification of
atmospheric conditions or the large-scale circulation,
then the so-called positive land–atmosphere feedback
cycle is complete—the high precipitation acts to sustain
itself through its interaction with the land surface. Pos-
itive land–atmosphere feedback can also take the op-
posite form, with dry conditions perpetuating them-
selves through the maintenance of low evaporation rates
at the land surface.

Although such feedback is a well-established phe-
nomenon in atmospheric models [see literature review
in Koster and Suarez (2003)], evidence that it occurs in
nature is highly limited. The problem lies in the dem-
onstration of the final part of the cycle, namely, that
anomalous evaporation rates unequivocally induce
anomalous rainfall rates. Some analyses of rainfall data
in irrigated regions are suggestive (Barnston and Schick-
edanz 1984), as are analyses of in situ soil moisture and
rainfall data (Findell and Eltahir 1997), though these
data can be examined in more than one way (Salvucci
et al. 2002), with contrasting conclusions.
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Koster et al. (2003), through a mix of observational
and model analyses, found evidence supporting the ex-
istence of positive feedback along a broad swath span-
ning the continental United States. They showed that
the monthly variances and the submonthly autocorre-
lations of precipitation inherent in the observational re-
cord have distinct patterns that are well reproduced (in
shape, if not in magnitude) by an AGCM when land–
atmosphere feedback is enabled. When the feedback is
artificially disabled in the AGCM, the model’s ability
to reproduce the patterns is destroyed. Koster et al.
(2003) concluded that either positive land–atmosphere
feedback does exist in nature or that through pure co-
incidence, the AGCM reproduces the correct patterns
for the wrong reason.

The present study builds on the Koster et al. (2003)
study by extending the analysis to global midlatitudes
and by focusing on time scales of greater relevance to
seasonal prediction. We quantify, through the construc-
tion of conditional probability density functions (pdfs),
the ability of a rainfall anomaly to affect—or at least
correlate with—subsequent rainfall up to three months
in the future. We then examine the ability of an AGCM
to reproduce the observed conditional pdfs when land–
atmosphere feedback is enabled and when it is artifi-
cially disabled. Section 2 describes the processing of
the observational data, and section 3 provides the ob-
servational results. Section 4 presents the model anal-
yses.

Note that some analyses (Findell and Eltahir 2003)
suggest the potential for negative land–atmosphere feed-
back in limited regions, by which wet soil tends to re-
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FIG. 1. (a) Pdf of standardized precipitation anomaly in May, Jun,
Jul, or Aug (solid curve) and the corresponding pdfs conditioned on
low and high prior precipitation (the dotted and dashed curves, re-
spectively) in the previous month. (b) Mean of the conditional pdfs
as a function of time. Each curve shows the expected value of the
standardized monthly precipitation anomaly 1, 2, and 3 months after
an initial ranked anomaly.

duce subsequent precipitation. The present paper im-
plicitly focuses on positive feedback. If negative feed-
back does exist in some places, it would, according to
the structure of our analysis, only tend to cancel out
some of the effects of positive feedback elsewhere—it
would only make the identification of positive feedback
in the data that much more difficult.

2. Data

Global monthly precipitation data generated by the
Global Precipitation Climatology Project (GPCP) (Huff-
man et al. 1997) are analyzed in this study. The version
2 dataset, which combines in situ (gauge) and satellite
measurements, covers the period 1979–2001 at a spatial
resolution of 2.58 3 2.58.

For this analysis, all precipitation amounts are stan-
dardized. If is the average precipitation for month jPj

across all years at a given grid cell, and if s j is the
standard deviation of the monthly totals for month j at
the grid cell, then we convert the precipitation Pj,n for
month j in year n to the corresponding standardized
quantity, :P9j,n

P 2 Pj,n jP9 5 . (1)j,n sj

The standardization is motivated by the short (23 yr)
data record. Correlations between monthly precipitation
rates tend to be low—much too low, in fact, to establish
accurately with 23 data pairs. One way around this lim-
itation is the use of anomaly pattern correlation tech-
niques (e.g., Van den Dool 1985; Van den Dool et al.
1986). Here, we instead invoke the principle of ergo-
dicity to combine data from the large number of mid-
latitude land grid cells into a single, huge sample. This
single sample is indeed large enough to allow the con-
struction of pdfs of monthly rainfall conditioned on the
rainfall of previous months.

Of course, by invoking ergodicity to study the feed-
back question, we are implicitly assuming that land–
atmosphere feedback operates everywhere the same
way. This is highly unlikely and is certainly not sup-
ported by AGCM analyses (e.g., Koster et al. 2000).
Nevertheless, it is an acceptable assumption to make
when testing the null hypothesis, that is, that feedback
in nature has no impact at all on precipitation behavior
at seasonal time scales. Note that other spatially non-
stationary aspects of rainfall (e.g., a geographically
varying response to SSTs) may also have an impact on
the pdfs. This is unavoidable. The model analysis in
section 4, however, will allow us to isolate the impact
of land–atmosphere feedback from other such influences
on the pdfs, at least for the AGCM’s climate.

3. Results

The solid curve in Fig. 1a is the pdf of monthly (stan-
dardized) rainfall based on 70 288 data values—values

sampled across both space (i.e., across 764 land grid
cells in boreal midlatitudes, between 308 and 608N) and
time (across 92 monthly values, using May, June, July,
and August totals for the years 1979–2001). We focus
in this paper on warm-season rainfall because it is the
most likely to be affected by land–atmosphere feedback.

The dotted and dashed curves in Fig. 1a represent
conditional pdfs based on a binning of the 70 288 pre-
cipitation values into five categories, defined as follows:
Associated with the precipitation value Pm,n in month m
of year n at a given grid cell (where m can be May,
June, July, or August) is a precipitation amount for the
prior month, Pm21,n. If Pm21,n is in the lowest fifth of all
monthly precipitation amounts at that grid cell for the
period in question (i.e., in the lowest fifth of all April,
May, June, and July precipitation amounts for the 23 yr
studied), then the precipitation value Pm,n is assigned to
category 1. Similarly, if Pm21,n lies in the second lowest
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fifth of all precipitation amounts at that cell for the
months studied, then Pm,n is assigned to category 2. We
invoke ergodicity to combine all values for a given cat-
egory across the globe into a single grouping of data,
from which we derive the conditional pdf associated
with that category.

The dotted curve shows the conditional pdf for cat-
egory 1, that is, it shows the pdf for precipitation
amounts that follow months of low precipitation. Sim-
ilarly, the dashed curve shows the conditional pdf for
category 5—it shows the pdf of precipitation amounts
that follow months of high precipitation. According to
Monte Carlo analysis, pdfs computed in this way are
statistically distinct at the 99.9% confidence level if their
means are separated by at least 0.03. The separation
indicated in Fig. 1 is much larger than this. Indeed, all
five conditional pdfs (one for each of the five categories)
are statistically distinct at the 99.9% level, implying a
nonzero level of predictability in the system—if pre-
cipitation is higher than average in 1 month, it is more
likely to be higher than average in the following month,
as well. The broad conditional pdfs have substantial
overlap, however, suggesting that the associated level
of predictability is very low. This is discussed further
in section 5.

The conditional pdfs remain distinct even for later
rainfall amounts. Figure 1b shows the means of the con-
ditional pdfs for monthly precipitation 1 month, 2
months, and 3 months after the month used for the bin-
ning. For example, if the monthly precipitation in a
given grid cell is very low—in the bottom fifth of all
anomalies—the dotted line in Fig. 1b shows the ex-
pected value of the precipitation anomaly in that grid
cell 1 month, 2 months, and 3 months later. Notice that
even after 3 months, the pdf of rainfall is still affected
by the initial anomaly. The separation of the highest and
lowest conditional expected values at 3 months is sta-
tistically significant at the 99.9% level.

The possibility that this distinction stems from long-
term trends in the precipitation was tested, at least par-
tially, by repeating the analysis with detrended data. At
each grid cell, the linear trend of precipitation over the
23 yr was determined through linear regression and then
subtracted from the original data. The conditional pdfs
(not shown) for the detrended data are just as distinct.

4. Model analysis

To examine whether or not the separation of the con-
ditional pdfs in Fig. 1 results from land–atmosphere
feedback, we employ a modeling approach similar to
that used by Huang and Van den Dool (1993) and Koster
et al. (2003). First we determine whether or not the
behavior in Fig. 1 can be reproduced by a full AGCM.
We then establish, through carefully designed simula-
tion experiments, the mechanisms underlying the
AGCM’s behavior.

a. Models used

We use the National Aeronautics and Space Admin-
istration (NASA) Seasonal-to-Interannual Prediction
Project (NSIPP) earth climate modeling system. As in
Koster et al. (2003), the ocean component of the system
is not used; instead, SSTs are prescribed to either ob-
served values or to a climatological seasonal cycle (see
section 4b). The AGCM, a state-of-the-art multilevel
primitive equation model with a well-established cli-
matology (Bacmeister et al. 2000), is run at a resolution
of 28 latitude 3 2.58 longitude. Coupled to the atmo-
spheric model is the Mosaic land surface model (LSM),
a soil–vegetation–atmosphere transfer model that in-
cludes an explicit treatment of subgrid vegetation het-
erogeneity (Koster and Suarez 1992, 1996).

b. Methods for prescribing variability

The model analysis relies on four separate 50-yr sim-
ulations with the land–atmosphere system. The simu-
lations are defined as follows:

1) simulation ALO: the control simulation, including
an interannually varying ocean surface and land–
atmosphere feedback,

2) simulation AL: a simulation that includes land–at-
mosphere feedback but imposes a climatological sea-
sonal cycle of SSTs,

3) simulation AO: a simulation with an interannually
varying ocean surface but with land–atmosphere
feedback artificially disabled, and

4) simulation A: a simulation with a climatological sea-
sonal cycle of SSTs and with land–atmosphere feed-
back artificially disabled.

The design of these experiments follows exactly that
used by Koster et al. (2000), who studied an analogous
series of 48 latitude 3 58 longitude experiments. A thor-
ough discussion of the strategy can be found there. In
essence, the four simulations allow us to quantify the
relative contributions of ocean variability and land–at-
mosphere feedback to variability in precipitation and
other atmospheric variables. Land–atmosphere feedback
is disabled in simulations AO and A by prescribing at
the land surface a (geographically varying) climatolog-
ical seasonal cycle of evaporation efficiency. The cli-
matological evaporation efficiencies were determined
by processing multidecadal output from simulation
ALO.

c. Results

As with all AGCMs, the statistics of simulated rainfall
are far from perfect. Still, the AGCM successfully cap-
tures the broad structures of the observed mean and
variance fields (Bacmeister et al. 2000; Koster et al.
2000, 2003) so that the simulated data should be ac-
ceptable for the present analysis. Impacts of the errors
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FIG. 2. Mean of the conditional pdfs as a function of time for each of the four AGCM experiments. Each
curve shows the expected value of monthly rainfall 1, 2, and 3 months after an initial ranked anomaly.

are, in any case, arguably partially avoided through the
standardization of the data—simulated means and var-
iances are effectively removed from the AGCM precip-
itation rates through the application of (1).

Figure 2 shows, for each of the four experiments, the
expected value of monthly rainfall for months 1, 2, and
3 conditioned on the anomaly in month 0. In other
words, the figure shows, for the simulated data, the
equivalent of Fig. 1b. As before, the data underlying
each mean are taken from land grid cells in boreal mid-
latitudes (between 308 and 608N), and month 1 can be
May, June, July, or August. The slightly higher reso-
lution of the AGCM relative to that of the observations
results in a higher number of land cells (944) contrib-
uting to the model’s statistics.

Clearly, the AGCM reproduces the character of the
observed conditional means only when land–atmo-
sphere feedback is enabled. The control simulation
(ALO) shows a distinction in the conditional means very
similar to, if slightly smaller than, that seen in the ob-
servations (Fig. 1b), as does the simulation with land–
atmosphere feedback but without a variable ocean (AL).
The slightly smaller distinction in the conditional means
for the model may partly result from the slightly smaller
size of the model’s grid cell (see section 5). Both sim-
ulations without land–atmosphere feedback (AO and A)
show little or no differentiation in the conditional
means. Interestingly, simulation AO does show a small
differentiation during the first month (significant at the
99.9% level), and the differentiation in simulation AL

is slightly less than that in the control. Perhaps both
land and ocean processes contribute to the distinction
seen in simulation ALO early on. Certainly, though, land
processes have, by far, the greatest impact on the po-
sitioning of the conditional pdfs.

5. Discussion

Not shown in Fig. 2 are the conditional pdfs for the
simulated data, which (for simulations ALO and AL)
are very similar to those for the observations (Fig. 1a).
The broadness of these pdfs underscores the point, worth
mentioning again, that the predictability associated with
the distinction in these pdfs is very low—a statistically
significant distinction does not in itself imply useful
predictive skill. Fortunately, this need not reflect the
upper limit of predictability associated with land–at-
mosphere feedback, for at least three reasons. First, the
analysis above assumes a strictly local impact of soil
moisture on precipitation. Precipitation, however, may
be controlled as much by remote, large-scale patterns
of soil moisture (and thus by remote patterns of ante-
cedent rainfall) as by local conditions (e.g., Beljaars et
al. 1996). Indeed, when either the observational data or
the AGCM data are spatially smoothed prior to gen-
erating the pdfs, so as to account for feedback across
larger spatial scales, the conditional pdfs are signifi-
cantly more distinct (Fig. 3a). A more complex empir-
ical method or a global seasonal prediction modeling
system can better address the remote impacts.
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FIG. 3. (a) Conditional pdfs for standardized monthly precipitation
anomaly in May, Jun, Jul, or Aug (as in Fig. 1a) obtained when a
spatial smoothing with a nine-point filter is initially applied to the
observational data. The ‘‘spatial averaging’’ scale of the observations
is thus of the order of 1000 km. (b) Same as (a), except no smoothing
is applied and only those land points indicated by the AGCM to have
strong feedback contribute to the pdfs. The criterion for strong feed-
back is that the difference between the category 1 and 5 local (grid
cell) conditional means for simulation ALO exceeds that for simu-
lation AO by at least 0.75.

Second, the analysis above treated all midlatitude land
grid cells equally. We know from past AGCM analyses
(e.g., Koster et al. 2000; Koster and Suarez 2003), how-
ever, that some land regions are more amenable to land–
atmosphere feedback than others. Up to now we have
looked at all land grid cells to keep the observational
analysis wholly objective and separate from the model
analysis. When we limit the analysis to the 61 grid cells
(mostly in the Great Plains of the United States) deter-
mined by the AGCM to be particularly strong areas of
feedback, the conditional pdfs for the observations again
become more distinct (Fig. 3b). It’s worth noting here
that the pdfs computed for areas outside of North Amer-

ica (e.g., throughout Asia; not shown) are still statisti-
cally quite distinct; the study area examined by Koster
et al. (2003) is not wholly responsible for the distinction
indicated in Fig. 1. The present analysis thus does extend
the analysis of Koster et al. (2003) to global midlati-
tudes.

The comparisons in Figs. 1 and 2, by the way, are
reproduced when considering the ‘‘strong feedback’’ re-
gions or when spatial smoothing is applied. That is, the
conditional means for the observations, now farther
apart, are well reproduced only by simulations ALO and
AL.

The third reason we are not evaluating the upper limit
of predictability is that local land–atmosphere feedback
relies on the soil moisture at the end of month 0, that
is, at the end of the month used to define the conditional
pdfs. Soil moisture at the end of a month, however, is
not perfectly correlated with the total precipitation dur-
ing the month. It is also affected by the precipitation’s
submonthly distribution and by interannual variations
in radiation, wind speed, humidity, and so on. A sea-
sonal prediction modeling system with a realistic land
surface model can better capture these additional con-
tributions to the initial soil moisture conditions.

Although the separation of the conditional pdfs in
Fig. 1 is not a representation of maximum predictability
associated with land–atmosphere feedback, it does allow
an analysis of whether this feedback exists at all in the
real world and whether it has any impact on the evo-
lution of precipitation at seasonal time scales. Again,
an impact of feedback on these time and space scales
has never been clearly demonstrated with observational
data. To summarize the present study, the expected value
of monthly precipitation in the observational record is
different for different values of antecedent precipitation.
The AGCM reproduces this distinction in the condi-
tional pdfs only when land–atmosphere feedback is al-
lowed. In analogy with the results of Koster et al.
(2003), this can lead to two possible conclusions: 1)
land–atmosphere feedback does occur in the real world
and can affect the pdf of precipitation even 3 months
after an initial anomaly, or 2) the AGCM’s fairly ac-
curate reproduction of the observed behavior is a prod-
uct of pure coincidence.

Conclusive proof of the existence of feedback in na-
ture is therefore still elusive. The analysis above simply
provides some intriguing supporting evidence.
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